FÍSICA GRACELI DE FASES CONFORME O SDCIIE GRACELI.


FASES DE CADEIAS, DE TEMPO DE PROCESSOS FÍSICOS E VARIAÇÕES DE FENÔMENOS, ESTADOS QUÂNTICO, FÍSICOS, TRANSICIONAIS DE GRACELI, E OUTROS, 


FASES DE TRANSFORMAÇÕES E INTERAÇÕES EM SUAS ESPECIFICIDADES CONFORME O SDCTIE GRACELI.

FASES DE CAUSAS, DE ESTADOS, DE TOPOLOGIAS DE ESTADOS, DE TOPOLOGIAS QUÂNTICAS.

DE TRANSIÇÕES E  DE ESTADOS DE TRANSFORMAÇÕES.

E VARIAÇÕES EM RELAÇÃO AO TEMPO E ESPAÇO, E EM RELAÇÃO AO SDCITE GRACELI.




Espaço de fases em mecânica quântica

Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados. Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).

estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:


X
SDCITE GRACELI.


A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.

Quantização a partir do espaço fásico clássico


Em física estatística se empregam distribuições de probabilidade sobre o espaço fásico, este conjunto de distribuições de probabilidade pode dotar-se de estrutura de espaço de Hilbert. É precisamente sobre esta abstração última que se constrói a mecânica quântica onde não se empregam espaços de configuração, senão diretamente espaços de Hilbert. O estado de um sistema quântico se define como uma "função de onda" que não é outra coisa que um elemento ou vetor deste espaço de Hilbert (concretamente o estado do sistema é uma classe de equivalência de vetores do espaço de Hilbert).


Comentários

Postagens mais visitadas deste blog